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SUMMARY 
A single-point model in the vertical is used to examine the coupling between tidal currents and wind-driven 
flows in shallow near-coastal regions. Calculations using both a linear slip and a no-slip condition at the 
sea bed clearly show that coupling between tidal and wind-driven currents cannot occur in a linear model 
with a time-independent eddy viscosity. However with a physically more realistic time-varying viscosity 
related to the Row field, coupling does occur, the magnitude of this non-linear interaction depending upon 
the change in eddy viscosity over a tidal cycle and the intensity of shear in the vertical. A point model in 
the vertical with Row induced by a n  oscillatory pressure gradient and an additional constant wind stress 
is used to examine the influence of viscosity parametrization and water depth upon this coupling. 

The solution in the vertical is accomplished using both a functional approach and a finite difference 
method. Some conclusions as to the relative merits of these approaches, particularly the use of a transformed 
grid in the case of high-shear surface and bed boundary layers, are made in the paper. 
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1. INTRODUCTION 

Over the last 10-1 5 years an extensive number of three-dimensional simulations of tidal currents 
and detailed comparisons with observations have been carried out.'-6 Although a number of 
three-dimensional wind-induced simulations have been and three-dimensional flow 
fields have been examined, to the authors' knowledge no work has been done to examine the 
coupling of tidal and wind-driven currents in regions of significant tidal currents at a time of 
strong wind-driven flows. The lack of a detailed examination of this problem is surprising, since 
the coupling of tidal and wind-driven effects causes changes in sea surface elevation during major 
wind events (storm surges); the phenomenon of tide-surge interaction is well known and has 
been examined using a number of two-dimensional vertically integrated models. 

In this paper a single-point model in the vertical driven by an oscillatory pressure gradient 
at tidal period together with surface wind stress forcing due to a constant wind stress is used 
to examine changes in tidal current profile at the fundamental period and the generation of 
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higher tidal harmonics when a time-dependent eddy viscosity is used. Changes in wind-induced 
current profile due to this oscillatory tide are also examined. 

Calculations are performed using both a time-invariant and a time-dependent eddy viscos- 
ity"-12 with both a slip and a no-slip bottom boundary condition. A simple flow-related eddy 
viscosity is used here rather than one derived from a turbulence energy model5 so that the 
processes coupling together tidal and wind-driven currents can be readily identified. The 
influence of eddy viscosity formulation, tidal forcing and water depth upon tidal and wind-driven 
coupling are examined. 

Two different numerical methods are used in the vertical to compute the current profile, 
namely a functional approach'3-'5 and a finite difference method. Some indication of the relative 
merits of each in problems involving two boundary layers, in this case the sea surface and sea 
bed, are made. Although a comparison of the functional and finite difference methods has been 
made previously in the case of tidal and wind wave problems (a single-boundary-layer prob- 
lem),I6 to the authors' knowledge no such comparison has been made in the case of two boundary 
layers (sea surface and sea bed). The fact that the two approaches yield results that are not 
significantly different serves as a vital check that the non-linear mechanism proposed here does 
in fact have a major influence upon tidal and wind-induced current profiles, i.e. we are not seeing 
a spurious numerical result due to the numerical scheme but a real physical process. 

2. HYDRODYNAMIC MODEL 

2.1. Hydrodynamic equations 

For a single-point model in the vertical driven by externally applied oscillatory pressure 
forcings of amplitudes H, and H, and phases gx and gy at period w the hydrodynamic equations 
are given byI6 

YO = COH, cos (wt + 9,) + aU 
at 
- _  

- + yu = wH, cos (wt + gy) + - av 
at aZ p - . a ( i:) 

In these equations u and u are the x- and y-components of current respectively, z is the vertical 
co-ordinate and t is time. The Coriolis parameter y is constant and p denotes the coefficient of 
eddy viscosity. 

For wind-driven flow the surface stress is equal to the external wind stress components F, 
and G,, i.e. 

surface surface 

where p is the water density. 
At the sea bed a no-slip condition can be applied, i.e. 

u = u = o ,  

or a bottom stress condition 

bed bed 

(3) 
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with F ,  and GB the bed stresses given by 

F B  = kp uj, Q ,  Gs = ~ P K Q ,  
where k is the coefficient of bottom friction and Uh and V, are the components of bottom current. 
For a linear slip bottom boundary condition 

while for quadratic slip 

Q = (V:  + Vl)”2 .  (7) 

2.2. Numerical solution using the Galerkin method 

Since extensive details on solving the hydrodynamic equations using the Galerkin method in 
the vertical have been presented else~here,~~.’’ , ’  ’-I9 we will only outline the major stages here, 
considering a mixed basis set. Thus the u and v-components of velocity are expanded as 

where $: and $; are additional functions specifically chosen to improve convergence in the 
near-surface layer, f,(a) are chosen as eigenfunctions of the eddy viscosity profile,15s17 a = z / h  
is the normalized vertical co-ordinate, with h the water depth, and A#) and Br(t) are coefficients 
to be determined using the Galerkin method. Having computed these coefficients, the current 
at any depth can be readily determined from expansion (8). The additional functions (‘en- 
hancement’ functions) $: and $2 were taken as the trigonometric functions used in Reference 
15. Since extensive details of the formulation and application of the Galerkin method using such 
a ‘mixed basis set’ approach are given elsewhere,I5.l7 they will not be repeated here. 

2.3. Solution using a j n i t e  diference grid in the vertical 

In the case of a no-slip condition at the sea bed it is advantageous to use a transformation 
which transforms equations (1) and (2) in such a manner that discretizing the transformed 
equations on a regularly spaced finite difference grid in the vertical is physically equivalent to 
using a grid with enhanced resolution in the near-bed region. 

Appropriate transformations on to a co-ordinate s are either logarithmic of the form 

s = In (z/S,)/p, with /? = In @/So), (9) 

or log-linear of the form 

s = [In (t) + t?)]/P, with p = In (i) + ~ h - So 

s* 
In these transformations h is the water depth and So is a small parameter which removes the 
logarithmic singularity at z = 0 and determines the degree of grid resolution in the near-bed 
region. The parameter S ,  in the log-linear transformation is an arbitrary height above the sea 
bed over which the grid is essentially logarithmic. 
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It can be readily shown from (9) that 

, with x = SoPe@s. 
a i a  

a Z  as 
_ - - -  - 

Using equation (1) for illustrative purposes, transforming gives 

yu = w H x  cos (wt + g x )  + - - - - . as a tau) as 
au 
at 
-- 

The numerical solution of equation (1 2) can be readily accomplished using the Crank-Nicolson 
method in the time domain with a finite difference grid in the vertical. 

Thus at the kth grid point we have 

where 6 u k  = U k + ,  - u k  and A is the vertical grid spacing. A staggered finite difference grid 
with respect to viscosity and flow has been used in the vertical (see Figure 1). Also, w k  = 1/x 
evaluated at u-grid point k and m k  = 1/x evaluated at the midpoint between u-grid points k + 1 
and k (see Figure 1). 

In equation (13) 8, lies in the range 0 < 8, < 1 and 8, = 0.1 - 8,, giving a time-centred 
solution when 8, = 8, = 0 5  (the Crank-Nicolson method) and an implicit solution when 
8, = 1.0 and O2 = 0.0. 

Davies' demonstrated the advantages of using the logarithmic or log-linear transformation 
to give a high grid resolution in the bottom boundary layer when a no-slip condition was used 
at the sea bed with tidal or wind wave forcing. The application of a functional approach with 
a no-slip condition is given in Reference 20. 

In this paper we consider the use of a similar transformation in the surface boundary layer 
with S, a parameter which determines the degree of grid resolution in the near-surface layer 
when wind forcing is applied. Also, an irregular grid spacing can be used with a logarithmic-type 
grid in the surface and bed boundary layers with spacing determined by S, (near-surface grid) 
and So (near-bed grid) when both wind and tidal forcing are applied with slip or no-slip 
conditions. 

3. NUMERICAL CALCULATIONS 

3.1. Eddy viscosity formulation for wind- and tidally-forcedjows 

There are two primary objectives of the series of calculations presented in this section. The 
first is to examine the accuracy of using finite difference grids, either uniform or irregular (in 
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the sense of having enhanced resolution in the near-surface and near-bed regions), to simulate 
a combination of tidal and wind-driven flows and to compare results from these with a functional 
approach. The second, having ensured that an accurate solution can be obtained (the first 
objective), is to examine how tidal and wind-driven current profiles are modified by a flow- 
dependent eddy viscosity depending upon the total current. 

In an initial series of calculations we assume that the eddy viscosity does not vary in the 
vertical (Figure 2, profile A). Although such a profile is acceptable away from the surface and 
bed boundary layers, a more general profile (Figure 2, profile B) is one in which the eddy viscosity 
decreases in the near-bed region to a value po reflecting a wall boundary layer. Just what form 
the eddy viscosity should take in the near-surface layer during major wind forcing is difficult to 
determine. If the surface is assumed to be a wall layer, then the eddy viscosity should decrease. 
However, during a large wind event the surface can be regarded as a source of turbulence as 
the wind wave breaks and the viscosity should increase in this layer.2' In view of this uncertainty, 
the viscosity in the surface layer was maintained at the same value as in the bulk of the water 
column. 

Measurements' ' * I 2  suggest that in the near-bed region the turbulence decreases over a distance 
h ,  of order 0.2h. 

At the sea bed po is given by 

Po = KO u*zo, (14) 

where KO = 0.4 is Von Karman's constant, U, is the frictional velocity of order 2-4 cm s - l  and 
Z o  is the roughness length of order 0.01-0.001 m, giving po of order O.OOO1 mz s-'. 

Away from the boundary layers the eddy viscosity pl is given by 

p1 = 0-0025hliil, (15) 

where ii is the depth-mean current. 
In shallow seas, i.e. water depths typically of order h = 40 m, tidal and wind-driven current 

velocities are of order u = 1 m s-'. Substituting these values in (15), we obtain pl = 0.1 m2 s-'. 
An alternative viscosity formulation (appropriate in deep water where the length scale is not 

limited by the water depth h but is determined by the boundary layer thickness A) is to express 
pl  as22 

pl = O.O025A1iiI, (16) 

A B 

Figure 2. Profiles of eddy viscosity used in the calculations 
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where 

with w1 = s-’  a typical frequency and C = 0.3 a constant. Taking U ,  as 2 cm s - ’  gives 
pl = 0.15 m2 s -I .  In the series of calculations described later using profile B, we take pl = 
0.1 m2 s-’  and p o  = 04001 m2 s-I.  

An alternative formulation to equations (15) and (16), although it can be shown in deep water 
to be equivalent to (16),” is to express p1 as 

with K, = 2.0 x 
time-varying eddy viscosity calculations. 

a dimensionless coefficient. Both equations (15) and (17) are used later in 

3.2. Calculations using a time-invariant eddy viscosity 

In an initial series of calculations a time-invariant eddy viscosity in the vertical (profile A, 
Figure 2) was used with a linear slip condition at the sea bed (equation (6)) and k = 0.002 m s-’ .  
Two water depths, namely a shallow near-coastal depth h = 10 m and a deeper offshore depth 
h = 100 m, were used in the calculation, with a range of eddy viscosity values, namely p = 0.1, 
001 and 0.005 m2 s-’ .  Calculations were performed using a uniform grid spacing, with the 
number N of finite difference grids taking a range of values, namely N = 20,40,60, 80 and 100, 
giving ACS ranging from 0.05 to 0.01. Calculations were also performed using an irregular grid 
spacing which was log-linear in the near-surface and near-bed boundary layers, giving the 
minimum A 0  shown in Table I in the near-surface and near-bed boundary layers. 

As a check on the accuracy of the finite difference solution, the calculations were also 
performed using the functional expansion initially without an ‘enhancement’ function, although 
subsequently such a function was used. Davies’ 5 v 1 6  showed that an accurate wind-driven surface 
current even with a low surface eddy viscosity value (p of order 001 mz s - ’ )  could be obtained 
using six eigenfunctions in the vertical and one ‘enhancement’ function. Such an expansion was 
used here, with the accuracy of both the finite difference and the Galerkin method checked using 
an expansion of 30 eigenfunctions with an additional ‘enhancement’ function. 

Motion was started from a state of rest by the simultaneous application of a unit pressure 
forcing of 12 h period (diurnal period denoted by D,) in the x-direction, i.e. H, = 1.0 m s-’ ,  
H, = 0.0, gx = 0.0 and gv  = 0.0 in equations (1) and (2), and a unit wind stress in the same 
direction, i.e. F ,  = 1.0 N m-’ and G, = 0.0. In these calculations the effects of rotation were 
removed, i.e. y = 0.0 in equations (1) and (2). A time step of 6 min was used in all the calculations, 
although DaviesI6 has shown that the Crank-Nicolson method is stable with a time step of 
order 30 min, but the solution is inaccurate with such a large time step. 

Since motion was started from rest by the sudden application of both pressure and wind 
forcing, it was necessary to integrate forward in time for the order of a few tidal periods (six 
periods in shallow water and 12 periods in deep water) before the influence of the initial 
conditions was removed and a periodic solution superimposed upon a steady flow was obtained 
(although in the case of deep water, h = 100 m, with low viscosity the solution had only reached 
a ‘near-steady state’). Once such a state was reached, a Fourier analysis was then performed 
using computed currents at each time step over a 12 h period in order to determine the magnitude 
of the residual current (denoted by Do),  the amplitude and phase of the fundamental and, in the 
case of time-varying viscosity (see later), the higher harmonics. 
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In the present case the eddy viscosity is time-invariant and consequently only the amplitude 
of the residual (Do) fundamental period (period D 2 )  was non-zero. However, in the case of a 
flow-dependent eddy viscosity, other higher harmonics (denoted by D, with a period of 6 h and 
D, with a period of 3 h) could be generated. 

In an initial series of calculations the eddy viscosity was fixed at 0-1 m2 s- l  with k = 
0-002 m s - l .  Computed tidal and wind-induced currents determined using a uniform grid with 
N = 20 or 100 were not significantly different and were in good agreement with those determined 
using a variable double-long-linear transformation in the vertical with enhanced resolution in 
the boundary layers and the functional approach. 

As expected from the surface and bed boundary conditions (equations (3) and (5)) ,  if we apply 
a simple stress balance pduldz = F, with F an applied external surface stress, then when p is 
high, du/dz will be low and there will no high-shear surface or bed boundary layer requiring a 
fine grid to accurately resolve it. 

As stated previously, in any problem involving a time-dependent eddy viscosity related to the 
flow field (equations (15) and (17)), when the currents are low, the eddy viscosity will be small 
and the shear in the surface and bed boundary layers can be very large, requiring the use of a 
fine grid. To test the accuracy of the finite difference method and the functional approach with 
low viscosity, the previous calculations were repeated with p = 0.01 and 0.0050 mz s-’. Profiles 
of the wind-induced current in both water depths (Figure 3) show that the shear in the surface 
and bed layers increases as expected as the eddy viscosity decreases. In the case of the amplitude 
of the D2-component of the tide, it is shear-free in the surface layer but the shear in the near-bed 
layer increases as the eddy viscosity is reduced. 

The magnitude of the wind-induced current (Do)  and the amplitude of the D,-component of 
the tide at the surface and bed computed using the uniform grid, the double-log-linear 
transformation and the functional approach are given in Table I. Considering initially Table 
I(a), water depth h = 10 m, it is evident that for a given eddy viscosity magnitude, as the number 
of grid boxes increases in the uniform distribution, the surface and bed wind-induced currents 
converge towards those computed with the functional approach as the surface and bed shear 
layers are more accurately resolved. In the case of tidal currents, where the profile is shear-free 
in the surface layer (Figure 3), enhancing the resolution has little effect upon the tidal surface 
current. In the case of bed currents the frictional retarding force of the sea bed produces a 
sheared layer in both the wind-induced and tidally induced currents (Figure 3) which must be 
resolved in the model. As expected, using an irregular finite difference grid with enhanced 
resolution in the surface and bed layers improves the resolution in these layers, particularly with 
lower ( p  = 0.005 m2 s- l )  eddy viscosity. As the eddy viscosity is reduced, the surface and bed 
layers become more highly sheared and hence the resolution in these layers must increase. 
Calculations using the Galerkin approach without an enhancement function show a slow 
convergence of the wind-driven current with p = 0.005 m2 s-’, although with the enhancement 
function a rapid rate of convergence is obtained, with six functions giving the same as 20 functions 
using eigenfunctions only, and in excellent agreement with that obtained using the irregular grid 
finite difference method. 

In these calculations the enhancement function was chosen to increase the rate of convergence 
in the surface layer. However, increased convergence in the bed layer could be obtained by using 
functions which depend upon the bed stress.” 

In deeper water, h = 100 m, particularly with low viscosity p = 0.005 m2 s- l ,  a true periodic 
condition had not been achieved after 2640 time steps (132 h). However, this ‘near-steady state’ 
was analysed in all cases in order to determine the rate of convergence of the various approaches. 
It is evident (Table I(b)) that with p = 0005 m2 s - ’  both tidal and wind-driven bed currents 



MODELLING OF WIND-TIDE NON-LINEAR INTERACTION 

0 

Q 0.5- 

171 

I 1 I 1 I I 

Figure 3(a). Profiles of residual wind-driven current (Do) and amplitude 
j~ =a01 m 2 s - l ,  h = 10m. 

of D,-component of tide computed with 

converge slowly and that as the grid is refined, the bed current increases, thus raising the bed 
stress and reducing the surface current. Calculations using the irregular grid show that with 
such a distribution the solution computed using N = 20 is comparable with that for N = 60 
on a regular grid. Calculations using an irregular grid with various So-values giving enhanced 
surface and bed resolution (i.e. a smaller Acr,,,) show solutions consistent with those obtained 
using an irregular grid with N = 100 (Table I(b)). 

Wind-driven surface currents computed using the Galerkin approach without the enhance- 
ment function show a very slow rate of convergence, with current values below those computed 
with the finite difference approach. However, including the enhancement function gives a much 
faster rate of convergence, although surface currents are still slightly below those computed with 
the finite difference method (Table I(b)). 

Although these calculations have involved the use of a flow-independent and hence time- 
invariant eddy viscosity with linear bottom friction, they do show that in the case of a 
flow-dependent viscosity it is essential to have high resolution in the boundary layers to account 
for the high-shear layers that can occur at times of low current and hence low viscosity. Since the 
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D, (cmls) 
100 200 300 400 500 I 0 I I 

0 0.5- 

1.0- 

Figure 3(b). As Figure 3(a) but with p = 0.0050 rn2 s - ' ,  h = 10 rn. 

eddy viscosity is independent of the flow field and the bottom friction is linear, no coupling 
occurs in the linear model used here between the wind-induced and tidal currents and hence no 
higher harmonics are produced. The solutions computed here are identical to those obtained 
by running the model with tidal or wind forcing alone. 

In the case of a time-dependent eddy viscosity produced by tidal flows, DaviesI6 showed that 
an accurate solution could be obtained by using a fine grid in the near-bed region. In the present 
series of calculations where we are considering tidal and wind-induced flows in combination, 
the presence of surface and bed shear layers requires a double-logarithmic layer with the order 
of 50-100 grid boxes in the vertical to accurately resolve the shear in these layers at times of 
low viscosity. In the next series of calculations with time-dependent viscosities a grid of this 
resolution (namely N = 100) was used in the vertical. 

3.3. Calculations using a pow-dependent time-varying eddy viscosity 

Unidirectionalflow with a slip condition (viscosity projile A ) .  In this series of calculations we 
again consider only unidirectional flow (the x-direction) by setting y = 0.0, and tidal forcing at 
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Figure 3(c). As Figure 3(a) but with p = 0.01 mz s - ' ,  h = 100 m. 

the D,-period of H ,  = 1.0 m s - ' ,  H ,  = 0.0, gx = 0.0 and g, = 0.0 with a superimposed unidirec- 
tional wind stress F ,  = 1.0 N rn-' and G, = 0.0. However, in these calculations the eddy viscosity 
is not constant but evolves with the flow field according to equation (15), i.e. an h(ii1-dependent 
viscosity. Since the eddy viscosity varies with the flow field and consequently with time, the 
wind-induced and tidally induced currents are no longer independent; also, the non-linearity 
introduced by the time-varying viscosity (the only non-linearity if the equations are solved subject 
to a no-slip or a linear slip condition) generates higher tidal harmonics, principally at the periods 

Consider initially eddy viscosity profile A with a linear slip condition (k = 0.002 m s-') 
and an hliil-dependent viscosity (equation (15)) in water depths of 10 and 100m (Table 11). 
The wind-induced currents (Do) and the amplitude and phase of the harmonics D2, D, 
and D, at surface, near-surface, mid-depth and bed in a water depth h = 10 m with p oc hliil 
computed with a uniform grid or a double-log-linear grid with N = 100 are not significantly 
different and are in excellent agreement with those determined using the functional approach 
(Table 11). 

D, and D,. 
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Figure 3(d). As Figure 3(a) but with p = 00050 mZ s - ' ,  h = 100 m using a slip condition 

It is interesting to note that as in the previous calculation in which the eddy viscosity 
was constant, the wind-induced current profile shows a decrease in magnitude from sea 
surface to sea bed (Table 11, Figure 4(a)). The amplitude of the D,-tide, however, no longer 
increases with height above the sea bed, with a shear-free region close to the sea surface, 
but shows a mid-water maximum with a decrease towards the sea surface (Table 11, Figure 
4(a)). Also, the D,- and D,-components of current are generated by the non-linearity 
produced by a time-varying eddy viscosity. These components are at a maximum near 
the sea surface where the shear is largest and hence the non-linear term pdu/dz is a 
maximum. 

In deeper water, h = 100 m, with p ci hliil some differences in wind-induced and tidally forced 
surface currents computed with N = 100 using a uniform grid and a double-log-linear grid are 
evident (Table 11), although currents computed with the double-log-linear grid are in excellent 
agreement with those obtained using the functional approach (Table 11). In all cases the current 
profiles show the same characteristics as those found in shallow water, namely a uniform decrease 
in wind-driven currents below the surface layer, with the D,-tidal current having a maximum 
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Table 11. Amplitude H (cm s- ' )  and phase g (deg) of residual D o ,  fundamental D, and higher harmonics 
D, and D, computed using finite difference and functional approaches at  various water depths c7. 

Calculations were performed using a slip condition at the sea bed with h = 10 and 100 m 

Uniform finite difference Transformed finite difference Functional method 

c7 D O  D 2  D4 D6 D 2  D4 D6 DO D 2  D4 D6 

(a) p a hliil, h = 10m 
1.0 H 109 38 10 5 110 40 10 5 

9 -  210 87 132 - 211 89 136 
099  H 108 39 9 5 109 41 9 4 

9 -  211 88 132 - 212 89 136 
0.50 H 73 64 3 2 74 65 3 2 

9 -  215 261 210 - 216 261 310 
0.0 H 49 58 0 0 50 60 0 0 

9 -  216 - 217 - - - - 

108 39 10 5 
- 210 90 136 
108 39 9 5 
- 210 89 136 
72 65 3 2 
- 215 262 313 
49 59 1 1 
- 216 336 38 

(b )  p a hliil, h = I00 m 
1.0 H 112 67 16 25 104 79 0 8 102 82 0 7 

9 -  266 81 111 - 257 - 98 - 257 - 102 
0.99 H 103 80 0 8 102 82 0 7 101 83 0 7 

9 -  258 - 103 - 257 - 102 - 257 - 102 
0.50 H 65 105 2 0 65 105 0 1 65 105 0 1 

9 -  263 62 - 263 - 271 - 263 - 274 
0.0 H 49 86 5 0 49 87 0 0 49 87 0 0 

- 

- - 261 - - 261 - - 9 -  261 183 - 

100 150 D, (cmh) 
0 10 15 

0 ,  

\ 

Q 0 . q  I 
/ 

0 50 100 150 0 10 15 
0 '  I 

D,(cmW D, (crnls) 

\ 0 \ / - -  

Figure qa) .  Profiles of residual current (Do) and harmonics D,, D, and D, computed with an hlil-dependent viscosity 
in water depths h = 10 m (-) and h = 100 m (---) using a slip condition 
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Figure qb) .  Time series of mid-depth current (-) and eddy viscosity (---) over two tidal cycles computed 
p cc hJiiI with h = 10 m and a slip bottom boundary condition 

using 

Figure qc) .  As Figure 4(b) but with h = 100 m 

near mid-depth (Table 11, Figure 4(a)). The generation of the higher harmonics is principally 
restricted to the D,-harmonic (Table 11). 

The differences between the surface currents computed with the uniform and transformed 
grids in the case of h = 100 m but not h = 10 m can be partly explained by the difference in 
water depth, in that for a given eddy viscosity the shear is larger in deep than in shallow water 
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(see Figure 3). However, to understand the slower rate of convergence in deep water, it is 
necessary to examine the time series of total current and surface viscosity (Figures 4(b) and 4(c)) 
over two tidal cycles. In shallow water (Figure 4(b)) the viscosity shows a maximum and a 
minimum value over a tidal cycle, with equal maxima and minima between tidal cycles, showing 
that a steady state periodic solution has been obtained corresponding to  the maximum and 
minimum currents over a tidal cycle (Figure 4(b)). In the absence of wind the time series of the 
u-component of current for the rectilinear tide considered here would show equal positive and 
negative values over a tidal cycle. The wind forcing used here increases the u-component of 
current and in the case of h = lOm the magnitude of the wind-induced current exceeds the 
amplitude of the tidal current, giving rise to the time series shown in Figure 4(b) in which the 
u-component of current remains positive. The eddy viscosity is a maximum at times of maximum 
flow and has a small but finite value at times of minimum flow. 

In deeper water, h = 100 m, the magnitude of the wind-induced current is less than the tidal 
amplitude and the u-component of current is negative for part of the tidal cycle, with times of 
zero current (Figure 4(c)). Consequently, the corresponding eddy viscosity time series is more 
complex, with times of zero eddy viscosity when the surface shear must be infinite and hence 
cannot be resolved in the model. However, the differences between the various numerical 
approaches are restricted to the very-near-surface currents, with currents 1 m below the sea 
surface being in excellent agreement (Table 11). 

Rectilinear tidalflow with a no-slip condition (viscosity profile B ) .  In the previous series of 
calculations a slip condition was used at the sea bed, with the eddy viscosity constant from sea 
surface to sea bed (Figure 2, profile A) and proportional to h[u l .  By using a slip condition, it 
was not necessary to resolve the near-bed logarithmic layer which occurs with a no-slip condition. 
In this series of calculations we use viscosity profile B (Figure 2) with a no-slip condition at the 
sea bed and hence include the bed logarithmic layer. The importance of resolving this layer 
using a logarithmic-type grid in the near-bed region for tidal flow problems was shown by 
Davies.', Since we are concerned here with both tidal and wind-driven flows, it  is necessary to 
resolve both the surface and bed boundary layers. 

Surface, near-surface, mid-depth and near-bed values of the residual current (Do)  and the 
amplitude and phase of the components D,, D ,  and D, of the tide computed with both an 
hliil- and a u2-dependent viscosity and profile B in a water depth h = 10 rn are given in Table 
111 using both a uniform grid ( N  = 100) and an irregular grid together with the functional 
approach. The corresponding results in a water depth h = 100 m are given in Table IV. Consider 
initially the hlul-dependent viscosity. It is evident from Table 111 that with a uniform grid the 
magnitude of the near-bed current is less than that obtained with the irregular grid which can 
accurately resolve the high-shear layer (Figure 5(a)) which occurs in the near-bed region. l 6  

Currents computed with the irregular grid were found to be in excellent agreement with those 
determined using the functional approach (Table 111). It is also clear from Table 111 and Figure 
5(a) that as in the previous series of calculations (those involving a slip condition at the bed), 
the wind-driven residual (Do)  decreases uniformly with distance below the surface, with a rapid 
reduction close to the bed. The direct tidally forced component D2 shows a mid-water maximum 
with a reduction in the surface layer and a rapid reduction close to the bed. The higher tidal 
harmonics D, and D, produced by  the non-linear interaction of a time-varying eddy viscosity 
and the shear term au/dz are largest in the surface and bed boundary layers where au/dz is 
greatest. 

Calculations using the ii2-dependent viscosity in a water depth h = 10 m show significant 
differences in the magnitude of the surface current computed using a uniform grid, a double- 
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Table 111. As Table I1 but using a no-slip condition at the sea bed with h = 10 m 

Uniform finite difference Transformed finite difference Functional method 

U DO D2 D4 D6 D O  D 2  D4 D6 DO D2 D4 D6 

1.0 H 99 23 10 8 
9 -  189 85 139 

0.95 H 94 27 7 6 
9 -  194 86 142 

0.5 H 57 51 9 3 
9 -  208 276 339 

0.05 H 27 38 9 4 
9 -  210 217 342 

(a)  P a  hlCl 
102 33 6 
- 202 80 
98 37 4 
- 204 76 
67 56 9 
- 211 287 
40 46 9 
- 213 286 

6 
144 

5 
145 

2 
354 

3 
353 

101 33 
20 1 

98 36 
- 203 
68 56 
- 21 1 
40 41 
- 213 

- 
6 6 

82 146 
5 5 

80 141 
8 2 

287 354 
10 3 

286 254 

1.0 H 200 
9 -  

0.95 H 95 
9 -  

0.5 H 19 
9 -  

0.05 H 1 
Y -  

266 
48 
12 
50 
46 

210 
43 

215 

(6) p cc ii2 

222 148 154 168 
93 143 - 49 
63 44 98 72 
90 136 - 62 
24 14 21 49 

264 322 - 215 
24 13 2 52 

270 331 - 220 

125 54 123 115 86 39 
93 140 - 54 101 158 
59 31 99 74 59 30 

110 172 - 59 101 169 
24 12 22 48 23 11 

278 348 - 214 277 348 
27 14 3 52 26 13 

286 3 -  220 286 4 

Table IV. As Table I1 but using a no-slip condition at the sea bed with h = 100 m 

Uniform finite difference Transformed finite difference Functional method 

U DO D2 D4 D6 D O  D 2  D4 D6 D O  D 2  D4 D6 

1.0 H 67 94 109 10 
9 -  261 21 87 

0.95 H 61 98 7 5 
9 -  261 43 104 

0.5 H 34 103 2 2 
9 -  259 92 314 

0.05 H 14 12 4 2 
9 -  249 291 265 

(0 )  Pa hl4 
76 91 9 11 75 92 7 8 
- 261 27 94 - 261 32 103 
70 95 6 5 12 95 5 5 
- 261 47 116 - 261 45 114 
42 104 2 2 44 104 2 2 
- 261 93 316 - 261 91 318 
22 81 3 2 24 82 3 1 
_. 254 305 305 - 255 308 311 

1.0 H 178 
9 -  

0.95 H 81 
9 -  

0.5 H 32 
9 -  

0.05 H 6 
9 -  

( b )  p oc ti2 

103 172 180 120 54 
351 27 64 - 248 
85 13 9 87 83 

256 34 136 - 253 
105 4 3 39 106 
262 106 337 - 263 
81 6 2 14 89 

252 301 280 - 258 

42 56 
1 92 

10 9 
32 148 
4 3 

105 337 
4 2 

314 321 

102 71 19 23 
- 250 16 112 
89 81 11 10 
- 252 28 137 
40 106 4 3 
- 264 100 346 
15 90 3 2 

258 318 334 - 
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Figure 5(b). As Figure 5(a) but with p a u2 
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logarithmic grid or the functional approach (Table III), although these differences in the case 
of the double-logarithmic grid and functional approach are confined to the near-surface layer 
(Table 111). Profiles (Figure 5(b)) and values (Table 111) show that as with the hlrll-dependent 
viscosity, Do decreases uniformly from sea surface to sea bed. However, D, does not exhibit a 
mid-water maximum but rather a minimum below the sea surface, with an increase rather than 
a decrease close to the sea surface, the reason for which is not apparent. The higher harmonics 
D, and D, are much larger in the case of the u2-dependent viscosity than in the case of the 
h I ul-varying viscosity, again showing maximum values in the near-surface and near-bed shear 
layers (Table 111, Figure 5(b)). To understand these differences in magnitude, it is instructive to 
examine time series of mid-depth currents and near-surface viscosities (Figure 6) and also to 
perform a Fourier analysis of the surface eddy viscosity time series over the same tidal cycle 
used in the current analysis. The time series of current (Figure 6(a)) in a water depth h = 10 m 
is very similar to that computed previously with the slip condition and shows a u-velocity varying 
over the tidal cycle but always remaining positive. Consequently, the corresponding time series 
of eddy viscosity (Figure 6(a)) is very similar to that found with a slip condition. 

In the case of the u’-dependent viscosity the current varies significantly over the tidal cycle 
(Figure 6(b)) and the depth-mean current was zero or small for a significant part of the cycle, 
giving rise to the time series of viscosity shown in Figure 6(b). It is apparent from this figure 
that the viscosity is low for significant parts of the tidal cycle, giving rise to major convergence 
problems and what appear to be some slight instabilities in the current time series (Figure 6(b)). 
Also, the rapid changes in the time series of eddy viscosity shown in Figure 6(b) will give rise 
to higher harmonics than those produced with the h I U [-dependent viscosity. 

A Fourier analysis of the two viscosity time series showed that the amplitude of the eddy 
viscosity at the frequencies Do, D,, D, and D6 (Table V) is about twice as large and at the 
frequency D, about five times as large with the U2-dependent viscosity as with the hliil-dependent 
viscosity, which partly explains the increased magnitude of the components D6 and D, of the 
tide in the calculation with p 0: Uz. 

Calculations in deeper water, h = 100 m (Table IV, Figure 5(a) and 5(b)), with both an hliil- and 
a U2-dependent viscosity show an intensification in the amplitude of the component D, of the 
tide at mid-depth, although in this case the eddy viscosity is much larger (Table V) and this 
reduces the shear in the vertical. 

Time series of current computed with both an h (  Ul- and a u2-dependent viscosity (Figures 6(c) 
and 6(d)) in a water depth h = 100 m show an oscillatory tidal flow with a superimposed 
wind-induced current. The time series show current magnitudes in both cases varying from the 
order of 150 to - 50 cm s - l ,  giving rise to a time-varying eddy viscosity changing from zero to 
a maximum of the order of 0.4 mz s - l  (Figures 6(c) and 6(d))-values of viscosity an order of 
magnitude larger than those found with h = 10 m. 

Time series of eddy viscosity (Figure 6) computed with both an hliil- and a U2-dependent 
viscosity in water depths h = 10 and 100 m clearly show that in shallow water the viscosity is 
much smaller and hence the surface shear much larger than in deep water. Also, the time variation 
with a U2-dependent viscosity is larger than with an h I U I-dependent viscosity, thus explaining 
the differences in magnitude in the components D, and D, of the tide found in these 
calculations. Obviously it is not just the value of the amplitude of the viscosity at the various 
frequencies but the time variation of the total which produces time variations in the depth to 
which the wind’s energy can diffuse. 

Circular tidal flow with a no-slip condition (viscosity profile B) .  In the earlier calculations 
rotation was omitted, y = 0.0, and tidal forcing was only in the u-direction, with wind forcing 
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Figure 6(a)(b). Time series of current (-) and eddy viscosity (---) over two tidal cycles computed using a no-slip 
condition with h = 10 m, p cc h l i l ,  (b) h = 10 m, p cc i2 
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also in this direction. In this series of calculations rotation is also omitted but we consider an 
additional tidal forcing in the u-direction phase-shifted by 90" from the u-tidal forcing, giving a 
circular tidal ellipse, i.e. the magnitude of the tidal current, which is equal to (u' + u2) l I2 ,  is 
constant. Consequently, in the absence of wind-driven currents a flow-related eddy viscosity of 
the form used previously would not show any time variability and hence in the single-point 
model considered here higher tidal harmonics would not be generated.'3 However, the addition 
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of a wind-forced current to the tidal current means that the eddy viscosity is no longer constant 
in time and higher harmonics and a residual flow can be generated in both the u- and u-directions 
(Tables VI and VII, Figures 7(a) and 7(b)). In an initial series of calculations a water depth 
h = 10 m was used. Calculations (Table VI) show that currents computed with an irregular 
log-linear grid using a ii2-dependent viscosity are not significantly different from those computed 
with the functional model, with some minor differences in the two approaches occurring using 
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Table V. Amplitude H (ern's-') and phase g (deg) 
at frequencies Do,  D,, D4 and D6 determined by 

Fourier analysis of the eddy viscosity time series 

h = 1 0 m  DO D2 D4 D6 

( a )  Rectilinear tidal flow 
p a  hlCl H 163 121 17 4 

9 - 209 284 4 
p a i i ’  H 281 291 31 22 

- 197 285 32 9 

h=100m 
p a  hli iJ  H 1820 1220 900 343 

- 260 161 250 
p a ii2 H 1338 1546 1030 84 

- 260 161 329 

9 

9 

(b )  Circular tidalflow (no slip) 
h = 1 0 m  
p a  hliil H 218 120 40 19 

9 218 281 344 
p a i i ’  H 456 283 91 43 

- 200 246 302 9 

- 

h=100m 
p a  hliil H 2802 1035 106 20 

9 26 1 357 81 

- 261 65 258 9 

- 

p a i i z  H 2385 1508 13 3 

a hlii [-dependent viscosity. In the case of the ii2-dependent viscosity the amplitude of the viscosity 
at all frequencies is much larger (Table V), leading to a faster rate of convergence of the grid 
box model owing to the reduced shear in the vertical (Table VI). It is evident from Table VI 
and Figure 7(a) that the Do-component of current in the wind direction exhibits a uniform 
decrease through the vertical above a high-shear bottom boundary layer, with that computed 
using the C2-dependent viscosity being significantly lower than that found with the hlul- 
dependent viscosity because of the larger viscosity arising with the C2-formulation. 

As in the previous series of calculations using a rectilinear tidal flow, the D,-component of 
current in the wind direction (the u-component) shows a mid-water maximum (Figure 7(a), Table 
VI), with the D,-component orthogonal to the wind direction (the o-component) showing the 
‘classical’ tidal current profile of nearly constant velocity (Table VI) above a high-shear bottom 
boundary layer. 

The non-linearity in the equations due to the time-varying viscosity produces currents at the 
tidal frequencies D ,  and D ,  in both the u- and v-components (Figure 7(a), Table VI) in a similar 
manner to that occurring with the rectilinear tidal flow. Also, it is interesting to note that a 
small tidal residual (the Do-frequency) is produced in the o-direction owing to the time-varying 
eddy viscosity. A similar residual will occur in the u-direction, but this is combined with the 
wind-driven residual and cannot be separated by Fourier analysis. 
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Table VI. Computed u- and u-components of amplitude H (cm s- ' )  and phase g (deg) at residual Do and 
tidal periods D,, D, and D6 using wind forcing and a circular tidal current ellipse in a water depth h = 10 m 

with a no-slip bottom boundary condition 

Transformed finite difference grid Functional method 

U DO D2 D4 D6 DO D2 D4 D6 

fa) P cc hlEl 
u-component 

1 .o H 90 42 12 11 88 42 11 11 
9 206 110 169 205 112 170 

0.5 H 59 59 6 3 58 59 6 3 
9 215 286 349 2 14 287 351 

0.05 H 36 47 I 4 36 47 7 4 
Y 216 290 351 216 29 1 3 59 

- - 

- - 

- - 

v-component 

1.0 H -3 14 8 2 -3 13 8 2 
9 134 233 313 - 134 230 315 

0.5 H -2 68 7 2 -3 68 7 2 
9 133 228 305 - 133 226 306 

0.05 H - 1  49 5 1 -2 49 5 1 
9 131 218 280 - 131 216 282 

- 

- 

- 

1 .o H 42 
9 

0.5 H 25 
9 

0.05 H 14 
9 

- 

- 

- 

1 .o H -2 
9 

0.5 H -2 
9 

0.05 H -1 
9 

- 

- 

- 

23 
196 
31 

204 
29 

205 

45 
118 
42 

117 
30 

116 

( b )  p cc t iz  

u-component 

5 I 
72 118 

I 3 
262 312 

7 4 
262 312 

v-component 

9 3 
181 245 

8 3 
179 240 

6 2 
174 229 

41 

25 

14 

- 

- 

- 

-3 

-2 

-2 

- 

- 

- 

24 
196 
36 

203 
29 

205 

45 
117 
42 

117 
30 

115 

5 
69 
7 

262 
7 

262 

8 
178 

8 
116 

5 
171 

6 
114 

3 
313 

4 
312 

4 
243 

3 
239 

2 
229 

Currents in deeper water (h  = 100 m) computed using both the hlii(- and the 2-dependent 
viscosity with the irregular double-log-linear grid and the functional approach are in much 
closer agreement (Table VII) than in the shallower water case. The reason for this is that 
the eddy viscosity is an order of magnitude higher (Table V) and hence the shear is reduced 
(compare Figure 7(b) with Figure 7(a)), so both approaches converge much more rapidly. 
Although the amplitudes of the D,- and (in the case of p cc hliil) D,-components of the eddy 
viscosity are much larger and therefore the time variability of the viscosity is higher than in the 
shallow water case, it is evident from Table VII that the D,- and D,-components are smaller. 
The reason for this is that the higher eddy viscosity in this calculation reduces the shear in the 
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Table VII. As Table VI but with h = 100 m 

Transformed finite difference grid Functional method 

DO D2 D4 D.5 DO D2 D4 D 6  

1 .o H 
9 

0.5 H 
Y 

0.05 H 
9 

1 .o H 
9 

0.5 H 
Y 

0.05 H 
9 

55 

38 

23 

- 

- 

- 

103 
262 
102 
260 
75 

256 

107 
174 
101 
171 
74 

165 

(a )  P cc h l i l  
u-component 

1 0 

1 0 

1 0 

- 132 

56 

12 

- 

- 

v-component 

2 0 
7 
1 0 

333 
1 0 

262 

- 

- 

- 

56 

39 

24 

- 

- 

- 

103 
262 
102 
260 
76 

256 

107 
173 
101 
171 
75 

166 

1 
134 

1 
57 

1 
15 

2 
6 
1 

332 
1 

263 

1 .o H 
9 

0.5 H 
9 

0.05 H 
9 

1 .o H 
9 

0.5 H 
9 

0.05 H 
Y 

57 

34 

18 

- 

- 

- 

97 
26 1 
103 
26 1 

78 
257 

106 
175 
102 
172 
76 

165 

(b )  p cc ii2 

u-component 

3 0 

3 0 

2 0 

- 163 

58 

19 

- 

- 

v-component 

19 

337 

262 

2 0 

2 0 

2 0 

- 

- 

~ 

57 

35 

19 

~ 

~ 

- 

97 
261 
103 
26 1 

79 
257 

2 
167 

3 
60 
2 

23 

106 
175 
102 
172 
77 

167 

2 
20 
2 

337 
3 

263 

vertical and hence the ability of the non-linear term pau/az  to transfer energy to the higher 
harmonics. 

Although rotational effects have been neglected in order to clearly demonstrate how wind 
forcing in the u-direction can lead to a residual flow in the o-direction, their inclusion is essential 
in any physically realistic ~ i r n u l a t i o n . ~ ~  Also, a quadratic bottom friction (equation (7)) rather 
than a linear friction is necessary in any ‘real-world’ model and the non-linearity that this 
introduces will itself produce higher tidal harmonics in addition to those due to the time-varying 
viscosity. 
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Figure 7(a). Profiles of u-component of residual current ( D o )  and harmonics D,, D, and D, computed using a circular 
tidal current ellipse with a no-slip condition in a water depth h = 10 m with p cc hliil (-) and p oc I? (---) 
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4. CONCLUDING REMARKS 

An idealized single-point model in the vertical has been used to examine the non-linear 
interaction between wind-induced and tidally forced currents due to time variations in the eddy 
viscosity. Calculations have been made using a uniform finite difference grid in the vertical with 
an increasing number of grid boxes and using an irregularly spaced grid with a log-linear 
compression in both the surface and bed regions. Complementary calculations using a functional 
approach have been performed to check the accuracy of the solution, in particular that the same 
non-linear interaction is found in both solutions and hence it is a physically real process rather 
than a property of the numerical method. 

Calculations using the uniform grid show that for low eddy viscosity values a large number 
of grid points are required to ensure sufficient resolution in the high-shear surface and bed 
boundary layers, particularly with a no-slip bottom boundary condition where a logarithmic 
layer can occur. For tidal flows subject to a no-slip bed condition, Davies’, showed that a 
logarithmic or log-linear compression in the near-bed region was essential to ensure computa- 
tional accuracy without using an excessive number of grid points in the vertical. The calculations 
performed here show that with log-linear-compressed grids in the surface and bed boundary 
layers, accurate solutions in good agreement with those obtained using a functional approach 
are possible. 

For the linear model considered here, if the eddy viscosity is constant, then the wind-induced 
and tidally induced current profiles are independent and no coupling can occur. However, by 
using a flow-dependent, more physically realistic eddy viscosity which varies with time, coupling 
can occur between the wind-induced current and that of tidal origin. The intensity of this 
coupling depends upon the time variability of the eddy viscosity and the magnitude of current 
shear in the vertical. Since the shear is largest in the surface and bed boundary layers, theory 
and calculations show that maximum coupling of the flows will occur in these regions, leading 
to a decrease at the sea surface in the amplitude of the D,-tide and the production of D4- and 
D,-harmonics in these regions. 

The significant change in the vertical profile of the D,-tide with a reduction in the surface 
boundary layer is consistent with results of simulations of tidal and wind-induced currents in 
the Eastern Irish Sea.24 The results from the simple model described here confirm that this is 
a physically realistic effect and go some way to explaining the mechanisms producing it. More 
physically realistic calculations using an Eastern Irish Sea model are presently in progress and 
will be reported s~bsequently.’~ 
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